
WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 1

Word Sense Determination from Wikipedia Data Using Neural Networks

Qiao Liu

A Project Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirements

Of the Degree

Master of Science

By

Qiao Liu

December 2017

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 2

© 2017

Qiao Liu

ALL RIGHTS RESERVED

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 3

The Designated Project Committee Approves the Master’s Project Titled

Word Sense Determination from Wikipedia Data Using Neural Networks

by

Qiao Liu

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2017

__

 Dr. Chris Pollett, Department of Computer Science Date

__

 Dr. Jon Pearce, Department of Computer Science Date

__

 Dr. Suneuy Kim, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

__

 Associate Dean Office of Graduate Studies and Research Date

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 4

ACKNOWLEDGEMENT

I want to express my sincere appreciation to my project advisor, Dr. Christopher Pollett, for his

enduring patience and guidance throughout this project. I also want to extend my thanks to the

committee members, Dr. Jon Pearce and Dr. Suneuy Kim, for their suggestions and time.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 5

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 6

Abstract

Word Sense Determination from Wikipedia Data Using Neural Networks

by Qiao Liu

Many words have multiple meanings. For example, “plant” can mean a type of living organism

or a factory. Being able to determine the sense of such words is very useful in natural language

processing tasks, such as speech synthesis, question answering, and machine translation. For the

project described in this report, we used a modular model to classify the sense of words to be

disambiguated. This model consisted of two parts: The first part was a neural-network-based

language model to compute continuous vector representations of words from data sets created

from Wikipedia pages. The second part classified the meaning of the given word without

explicitly knowing what the meaning is. In this unsupervised word sense determination task, we

did not need human-tagged training data or a dictionary of senses for each word. We tested the

model with 5 randomly selected ambiguous words from 10 words that formed the test set in the

related work by Schütze in 1998, and compared our experimental results with Schütze’s. The

comparison showed that our model got better accuracy for 2 words, similar accuracy for 1 word,

and poorer accuracy for 2 words.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 7

Table of Contents

Abstract ... 6

1. Introduction ... 11

2. Background ... 13

2.1 Review of Existing Work .. 13

2.2 Word Embeddings ... 15

2.3 Statistical Language Models Based on Neural Networks 16

3. Model Architecture ... 18

3.1 A Modular Model to Determine Word Sense .. 18

3.2 Skip-gram Model .. 18

3.3 k-means Clustering ... 22

4. Data Sets and Data Preprocessing ... 24

4.1 Extract Sentences .. 24

4.2 Create Dictionary and Reversed Dictionary ... 24

4.3 Regenerate Sentences .. 25

4.4 Create Word Pairs ... 25

5. Implementation ... 27

5.1 Parameters of Skip-gram Model ... 27

5.2 Optimizer of Skip-gram Model ... 28

5.3 Tools and Packages ... 28

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 8

6. Experiments .. 30

6.1 Experiment with Skip-gram Model .. 30

6.2 Experiment with Classifying Word Senses ... 32

6.2.1 Metric .. 34

6.2.2 Results ... 34

6.2.3 Discussions ... 35

7. Conclusion and Future Work .. 36

References ... 37

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 9

Figures

Figure 1: Word vector in Schütze’s approach ... 15

Figure 2: Two-dimension projection [12] ... 16

Figure 3: A modular model ... 18

Figure 4: The skip-gram model architecture ... 19

Figure 5: The skip-gram model ... 21

Figure 6: Extracted sentence examples ... 24

Figure 7: Word frequency and index examples .. 25

Figure 8: Sentences with words representing in indices ... 25

Figure 9: Example of parameters .. 28

Figure 10: The average loss during training ... 31

Figure 11: Nearest words 1 ... 32

Figure 12: Nearest words 2 ... 32

Figure 13: Test data examples ... 33

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 10

Tables

Table 1: Word pair examples generated from a sentence .. 20

Table 2: Parameters for the skip-gram model ... 27

Table 3: Parameters of test group 1 ... 30

Table 4: Parameters of test group 2 ... 31

Table 5: Parameters of test group 3 ... 31

Table 6: Parameters for our skip-gram model ... 32

Table 7: Experiment results .. 34

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 11

1. Introduction

Word sense disambiguation is the task of identifying which sense of an ambiguous word

is used in a sentence. There are two variants of the word sense disambiguation task: lexical

sample task and all-words task. In lexical sample task, we need to disambiguate a small set of

pre-selected words. In all-words task, we need to disambiguate every word shown in the text.

Word sense disambiguation task can be divided into two subtasks: sense discrimination task and

sense labeling task. Sense discrimination task groups/clusters the occurrences of an ambiguous

word with the same meaning. Sense labeling task assigns the sense labels to the occurrences of

an ambiguous word. This project focus on the sense discrimination component of lexical sample

task. The purpose of the project is “given a word to be disambiguated, to group occurrences of

the word into clusters, without explicitly knowing the meaning of the occurrences”.

There are three fundamental approaches of word sense disambiguation: dictionary-based,

supervised machine learning, and unsupervised learning. In this project, we used unsupervised

learning to classify the senses of the target word. In the unsupervised learning approach

introduced by Schütze’s in 1992 and 1998 [14, 21], he interpreted the sense of the ambiguous

word as clusters of similar contexts. We used the same interpretation in our project. Unlike

Schütze’s approach using co-occurrence counts to generate vectors, we used word embeddings

trained by a neural statistical language model to generate word vectors. Schütze used a data set

taken from the New York Times News Service. We used data sets generated from Wikipedia

pages.

We experimented and evaluated the disambiguation tasks on some naturally ambiguous

words that were used by Schütze (1998) [21]. We classified occurrences of these words to

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 12

two/three frequent senses and compared the experimental results with Schütze’s test results [21].

For some words, our model got better accuracy. However, for some words, our model failed to

classify the senses. We analyzed the result in discussions section.

In this report, Chapter 2 presents a review of existing work and describes the background

and technique we used in our project. Chapter 3 describes the model architecture. Chapter 4

introduces the data sets and data preprocessing. Chapter 4 describes the key information about

implementation. Chapter 6 presents the experimental results and our discussions. Chapter 7

presents the conclusion and possible future work.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 13

2. Background

This chapter reviews existing work of word sense disambiguation and introduces the

word embeddings and neural-network-based statistic language models, which are needed to

understand the project.

2.1 Review of Existing Work

Three fundamental approaches of word sense disambiguation mentioned in introduction

are described in detail as below:

1. Dictionary-based: Michael Lesk initially implemented this approach in 1986 [11].

Given a target word t to be disambiguated in context c. First, they retrieved all the

sense definitions for t from a dictionary. Then, they selected the sense s whose

definition had the most overlap with c of t. There are variant ways to measure the

overlap. One example is using IDF weighted vectors. The dictionary-based approach

requires a hand-built machine readable semantic sense dictionary.

2. Supervised machine learning: A set of features has been extracted from the context of

the target word. Different types of features can be extracted, such as collocational

features and bag-of-words features. The features were used to train classifiers that can

label ambiguous words in new text. Different classifiers have been used, such as

naïve Bayes, logistic regression, k-nearest neighbors, etc. Same as dictionary-based

approaches, these approaches require costly large hand-built resources, because we

need to label each ambiguous word in the training data. A semi-supervised approach

was proposed in [20]. In this approach, they did not rely on a large hand-built data,

due to using bootstrapping to generate dictionary from a very small hand-labeled

seed-set [20].

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 14

3. Unsupervised machine learning: Schütze used a clustering method for word sense

discrimination in [14, 21]. He interpreted the sense of the ambiguous word as clusters

of similar contexts. Words were represented by high-dimensional, real-valued vectors

derived from co-occurrence counts. As shown in Figure 1, the vector of word “judge”

was derived from the co-occurrence counts of its neighbor words “legal” and

“clothes”. Schütze used the most frequent 1,000 and 2,000 words to generate vectors,

which meant the word vector dimension was 1,000 and 2,000 respectively. The

centroid (or sum) of the word vectors in the context represented the context vector.

The set of context vectors collected from the corpus was clustered, and then the

centroid of the context vectors in the cluster was used to represent the sense of that

cluster. To discriminate the sense, he measured and ranked the cosine similarity

between the context vector and sense vector.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 15

Figure 1: Word vector in Schütze’s approach

In our project, we used a modification of the unsupervised machine learning approach.

Word embeddings are trained by a statistical language model based on neural networks using

data from Wikipedia pages. More details are introduced in the following sections.

2.2 Word Embeddings

To represent word and contexts in vector space, we used word embeddings. Word

embeddings are sometimes called word representations or word vectors. A word embedding

maps each word to a dense vector W of real numbers [12]. To compute word embeddings,

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 16

vectors of words are initialized by generating vectors with random real numbers. A program

learns meaningful vectors by perform some tasks.

word → 𝑅"

W(“plant”) = [0.3, -0.2, 0.7, …]

W(“crane”) = [0.5, 0.4 -0.6, …]

To see word embeddings’ intuitive sense, we can visualize the representation of words in

a two-dimension projection. For example, looking at Figure 2, digits are close together, and,

similar words are close together [12]. It turns out, though, that much more sophisticated

relationships are also encoded in this way [12]. We used word embeddings in our disambiguation

task.

Figure 2: Two-dimension projection [12]

2.3 Statistical Language Models Based on Neural Networks

To train the embeddings, we used a statistical language model based on neural networks.

This section introduces some backgrounds and histories of the neural network based statistical

language models.

Many natural language processing systems represent each word in a one-hot vector,

which with value 1 at the position of the word and value 0 at all other positions. The system

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 17

learns the joint probability function of sequences of words in a language [1]. The one-hot vector

technique faces the problem of the curse of dimensionality [1]. For example, to model the joint

distribution of a sequence of m words in a language with a vocabulary of size |V|, the size of the

vector is potentially |𝑉|% – 1.

Probably the most successful concept to fight the curse of dimension is to use distributed

representation of words [3]. In this representation, each word is represented by a word vector of

d real-valued parameters. d is usually equals to some hundreds, which is much smaller than the

size of the one-hot vector.

Rumelhart, Hinton, and Williams proposed a new learning procedure for networks of

neuron-like units in 1986 [3, 5]. This idea has been applied to statistical language modelling by

Bengio, Ducharme, and Vincent in 2003 [1]. They proposed a very popular model architecture

for estimating a neural network language model (NNLM), where the model simultaneously

learns a distributed representation for each word along with the probability function for word

sequences, expressed in terms of these representations [1]. Many works showed neural network

based language models significantly outperform n-gram models [1, 6, 7], which use one-hot

vector. Another architecture of NNLM was proposed in [2]. This model used neural networks

with a single hidden layer to learn word embeddings. Several extensions that improve both the

quality of the vectors and the training speed were introduced in [8].

We employed the Skip-gram model introduced in [8] in our project. It is a simply and

efficient method with only one hidden layer for learning high-quality vector representations of

words from large amounts of unstructured text data [3]. More detail about the model is

introduced in the model architecture section.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 18

3. Model Architecture

3.1 A Modular Model to Determine Word Sense

Many natural language processing tasks take the approach of first learning a good word

representation on a task and then using that representation for other tasks. We used this approach

for the word sense determination task. The model architecture is shown in Figure 3. We trained a

Neutral Network Language Model to get the word embeddings. Even though a single word might

carry multiple meanings, one representation per word was learned. We cannot determine the

word’s sense by using the word’s embedding itself. The distributional hypothesis indicates that

similar words appear in similar contexts [9, 10]. By exploiting this hypothesis, we used a

classifier on top of the word embeddings to cluster the context to determine the meaning of the

target word.

Figure 3: A modular model

3.2 Skip-gram Model

The continuous Skip-gram model is simple and efficient method for learning high-quality

vector representations of words from large amounts of unstructured text data [3]. The structure of

the model is showed in Figure 4 [3]. The input layer takes in a target word, the projection layer

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 19

projects the probability that each word appears as the target word’s context. The output layer

outputs the selected context words.

Figure 4: The skip-gram model architecture

The training objective was to learn word embeddings good at predicting the context

words in a sentence. We trained the neural network by feeding it word pairs of target word and

context word found in our training dataset. Rather than use all context words, we only scan

through context words appear in a predefined window size. Given the sentence “natural language

processing projects are fun.” and the window size of 2, we get the word pairs as in Table 1.

Sentence Training samples
natural language processing projects are fun (natural, language)

(natural, processing)
natural language processing projects are fun (language, natural)

(language, processing)
(language, projects)

natural language processing projects are fun (processing, natural)

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 20

(processing, language)
(processing, projects)

natural language processing projects are fun (projects, language)
(projects, processing)
(projects, are)
(projects, fun)

natural language processing projects are fun (are, processing)
(are, project)
(are, fun)

natural language processing projects are fun (fun, projects)
(fun, are)

Table 1: Word pair examples generated from a sentence

More details about the model are shown in Figure 5. In this example, the vocabulary size

is |V|. The word representation size is d. We represent the word “plant” as a one-hot vector (only

the position of the word in the vocabulary is 1, otherwise, it is 0) in input layer. The hidden layer

represents a matrix of size d x |V|. Each column in hidden layer represents the vector of one

word. The output layer size is |V|. Each value in the output layer represents the probability that

the word appears as context word of “plant”. To predict the context word, first, the model looks

the vector of the target word up in the hidden layer, and then calculates the similarity between the

target word and each word in the vocabulary. The similarity is measured by using dot product of

vectors of the target word and the context word.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 21

Figure 5: The skip-gram model

The objective was to maximize the probability of any context word given the target word:

𝐽' 𝜃 = 	 𝑝(𝑤./0|𝑤.; 𝜃)
3%404%
056

7

.89

 𝑤. is the target word, 𝜃 is the word embeddings matrix of size |𝑉| x d, and 𝑚 is the window

size. If 𝑚 = 2, as in Figure 4, we take two words before the target word and two words after the

target word. |𝑉| is the vocabulary size. By taking the negative log, we can transform the

problem to one where we minimize the loss 𝐽 𝜃

𝐽 𝜃 = 	−	
1
𝑉	 log	(𝑝(𝑤./0|𝑤.; 𝜃))

3%404%
056

7

.89

The probability was defined as a sigmoid function:

𝑝 𝑤@ 𝑤. =
exp	(𝑤@D𝑤.)
exp	(𝑤0D𝑤.)7

089

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 22

The objective was further transformed to maximize the log probability or minimize the

negative log probability.

Some models use different vector representations for each word when it is target word or

context word. In the definition above and our implementation, each word has the same vector

representation no matter it is target word or context word, which is widely used to improve

training efficiency.

The large size of our word vocabulary (20K/50K) means that our skip-gram neural

network has a tremendous number of weights, all of which would be updated slightly by every

one of our billions of training samples [18]. To improve the train efficiency, hierarchical softmax

or negative sampling (NEG) [2] is usually used. Negative sampling is similar as Noise

Contrastive Estimation (NCE) [16]. The idea of NCE is to use logistic regression to differentiate

data from noise. NEG further simplifies NCE. To use NEG in the Skip-gram model, we need to

generate noise by randomly selecting words to create negative word pair samples. The

experiment results in [3] show that the 2-5 negative samples are sufficient to separate signal form

noise for large datasets. We set the negative sample size to 3 in our experiment.

3.3 k-means Clustering

k-means is a simple unsupervised classification algorithm. The aim of the k-means

algorithm is to divide m points in n dimensions into k clusters so that the within-cluster sum of

squares is minimize [13]. The word vector represents the position of the word in a high

dimensional space. The distributional hypothesis says that similar words appear in similar

contexts [9, 10]. Thus, we can use k-means to divide all vectors of context into k clusters. There

could be many ways to create the vectors from the context. One way is getting the mean of the

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 23

context, which is used in our implementation. The restriction of using k-means clustering in our

project is that we need to know the number of senses of the word before perform clustering on it.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 24

4. Data Sets and Data Preprocessing

With the model described in the Model Architecture chapter, we need to extract word

pairs from a natural language to train the model. Our training data is based on a Wikipedia data

dump. In our experiments, we downloaded the data from

https://dumps.wikimedia.org/enwiki/20170201/. The pages-articles.xml of Wikipedia data

dump contains current version of all article pages, templates, and other pages. The steps to

generate training data (word pairs) from Wikipedia data included sentence extraction, dictionary

and reversed dictionary creation, sentence regeneration, and word pairs creation.

4.1 Extract Sentences

First, we extracted all sentences from article pages and cleaned the sentences. To indicate

the start and end of sentences, we used “<” and “>” respectively, and we also treated them as

words in the following steps. We only kept the sentences of length >= 9, since we used 10

context words for each target word. Finally, we extracted 90,887,424 sentences in total.

Figure 6: Extracted sentence examples

4.2 Create Dictionary and Reversed Dictionary

In the input layer, we used a one-hot vector to represent the word as show in Figure 5. In

the implementation, we simply used index of the 1 in the one-hot vector to represent the word.

To create a dictionary mapping each word to its index, we counted word frequency, and sorted

words by their frequencies. Then, the word’s frequency rank in the descending order was used as

the index of the word. We constrained the size of the dictionary, thus many rarely shown words

were not included in the dictionary but were represented as “UNK” with index 0. Figure 7 shows

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 25

the top 5 frequent words’ frequency and their indices. The “<” and “>” represent the start and

end of a sentence respectively.

Figure 7: Word frequency and index examples

A reversed dictionary, which maps the index to the word, was created simultaneously. It

was used to construct natural language sentences from lists of indices in the experiment.

With different vocabulary size, we will get different dictionary. In our implementation,

we experimented two vocabulary sizes of 20k and 50k.

4.3 Regenerate Sentences

Using the dictionary, we translated each text sentence to a sequence of indices. The

examples shown in Figure 6 was translated to sentences show in Figure 8 with vocabulary size of

20k.

Figure 8: Sentences with words representing in indices

4.4 Create Word Pairs

To generate word pairs, we need to set the window size of the context and the number of

context words to be used. For example, when the window size is 3, and the number of context

words is 4, we need to randomly select 4 context words out of 6 (3 x 2) neighbors to generate 4

pairs for each target words. In our implementation, we set the window size to 5 and the number

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 26

of context words to 10. We processed 545,107,494 target words, which means around 5 billion

word pairs have been generated.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 27

5. Implementation

We used TensorFlow as the framework to build the Skip-gram model to train word

embeddings. The Skip-gram model has many parameters. In the following section, we

summarize the meaning of the parameters and introduce the optimizer used in our

implementation. After the Skip-gram model was implemented to train the word embeddings, the

python science package sklearn [15] was used to perform k-means clustering on the top of the

embeddings.

5.1 Parameters of Skip-gram Model

Table 2 shows the parameters and meanings for the Skip-gram model. We experimented

with different parameters. We show the results in the Experiments chapter. One example setting

to the parameters is shown in Figure 9.

Parameters Meaning

VOC_SIZE The vocabulary size with all rare words represented as ‘UNK’
in vocabulary.

SKIP_WINDOW The window size of text words around target word.

NUM_SKIPS The number of context words.
Those number of context words in the window will be
randomly took to generate word pairs.

EMBEDDING_SIZE The number of parameters in the word embedding.
The size of the word vector.

LR The learning rate of gradient descent.

BATCH_SIZE The size of each batch in stochastic gradient descent. Running
one batch takes one step.

NUM_STEPS The number of training steps.

NUM_SAMPLE The number of negative samples. It can be as small as 2-5 for
large datasets [3].
Table 2: Parameters for the skip-gram model

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 28

Figure 9: Example of parameters

Since we are using negative sampling, the noise distribution is a parameter for the model

as well. The tf.nn.nce_loss uses a log-uniform (Zipfian) distribution for sampling by default, so

our labels must be sorted in the descending frequency order to achieve good results [18].

5.2 Optimizer of Skip-gram Model

Gradient descent finds the minimum of a function by taking steps proportional to

the positive of the gradient. In each iteration of gradient descent, we need to calculate all

examples. Instead of computing the gradient of the whole training set, each iteration of stochastic

gradient descent only estimates this gradient based on a batch of randomly picked examples [17].

We used stochastic gradient descent to optimize the vector representation during training.

5.3 Tools and Packages

The amount of data we processed is too large to load into memory at one time.

Throughout the implementation, the data was read line by line to reduce the memory

requirements. The tools and packages we used are listed below:

TensorFlow r1.4

TensorBoard 0.1.6

Python 2.7.10

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 29

Wikipedia Extractor v2.55

sklearn.cluster [15]

numpy

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 30

6. Experiments

We experimented the Skip-gram model with different parameters and selected one word

embedding for clustering.

The experimental results were compared with Schütze’s unsupervised learning approach

in 1998 [21]. He used a data set (435M) taken from the New York Times News Service. We used

the data set extracted from Wikipedia pages (12G). In his approach, co-occurrence counts were

used to generate vectors, which had large numbers of vector dimension (1,000/2,000), therefore,

he applied singular-value decomposition to the vectors. We used the Skip-gram model to learn a

distributed word representation with a dimension of 250. Taking advantage of a smaller number

of dimension, we did not need to perform any matrix decomposition.

6.1 Experiment with Skip-gram Model

To decide which learning rate to use, we experimented with a group of tests with 3

different learning rates (LR) as shown in Table 3. We found the model converged to similar

average losses after around 20M steps. We selected the learning rate as 0.3 for future

experiments.

Parameters VOC_SIZE SKIP_WINDOW NUM_SKIPS EMBEDDING_SIZE

Value 20K 5 10 128
Parameters LR BATCH_SIZE NUM_STEPS NUM_SAMPLE
Value 0.03/0.3/1.0 128 Set to 1 epoch 3

Table 3: Parameters of test group 1

To decide the number of the training epochs, we experimented with 2 tests with different

NUM_STEPS values as shown in Table 4. We observed lower loss using 2 epochs. By referring

to the experiment in [2], we decided to train the model with 6 epochs.

Parameters VOC_SIZE SKIP_WINDOW NUM_SKIPS EMBEDDING_SIZE

Value 20K 5 10 128
Parameters LR BATCH_SIZE NUM_STEPS NUM_SAMPLE

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 31

Value 0.3 128 Set to 1 epoch / 2
epochs

3

Table 4: Parameters of test group 2

To select the vocabulary size, we experimented with 2 tests with parameters as shown in

Table 5. Increasing the vocabulary size from 20K to 50K helped to decrease the loss slightly.

Parameters VOC_SIZE SKIP_WINDOW NUM_SKIPS EMBEDDING_SIZE

Value 20K/50K 5 10 128/250
Parameters LR BATCH_SIZE NUM_STEPS NUM_SAMPLE
Value 0.3 128 Set to run dataset

1 time / 2 times
3

Table 5: Parameters of test group 3

To monitor the loss of the model during training, we used average loss to estimate the

loss over every 100K batches. The loss had shown the same pattern during training with different

parameters. The loss of the training in first group with learning rate 0.3 is shown in Figure 10.

While the loss keep decreasing, the model found words closer to the target word. The nearest

words of sample words at training step 10M is shown in Figure 11, and the result at training step

40M is shown in Figure 12. Even from intuition, we could observe better performance at step

40M.

Figure 10: The average loss during training

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 32

Figure 11: Nearest words 1

Figure 12: Nearest words 2

The final parameters we selected is show as in Table 6.

Parameters VOC_SIZE SKIP_WINDOW NUM_SKIPS EMBEDDING_SIZE

Value 50K 5 10 250
Parameters LR BATCH_SIZE NUM_STEPS NUM_SAMPLE
Value 0.3 256 Set to 6 epochs 3

Table 6: Parameters for our skip-gram model

6.2 Experiment with Classifying Word Senses

To train the classifier, we clustered the contexts of the occurrences of given ambiguous

word into two/three coherent groups. To evaluate the classifier, we manually assigned labels to

the occurrences of ambiguous words in the test corpus, and compared them with machine learned

labels to calculate accuracy (to be described below). As shown in Figure 13, the column “human

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 33

label” gives the human-tagged meanings and the column “label” gives the machine learned

labels.

Figure 13: Test data examples

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 34

6.2.1 Metric

After we labelled the test sentences by hand, we could find the fraction of occurrences

with the most frequent meaning. Before word sense determination, we assigned all occurrences

to the most frequent meaning, and used the fraction as the baseline.

We calculated the disambiguation accuracy of the model as:

accuracy = EF%GHI	@J	K"L.M"NHL	OK.P	N@IIHN.	%MNPK"H	QHMI"HR	LH"LH	QMGHQ
DPH	.@.MQ	"F%GHI	@J	.HL.	K"L.M"NHL

6.2.2 Results

Table 7 show results of our word sense determination experiments and related results of

Schütze’s experiments.

word senses Training Test Schütze’s
baseline

Schütze’s
accuracy

Baseline Accuracy

capital Stock of goods/
Seat of
government

179,793 100 64% 71% 59% 79%

plant living/factory 164,858 100 54% 64% 59% 76%

ruling an authoritative
decision to
exert control /
influence

 60% 84% 63% 70%

crane bird/
machine/
person name

6,655 100 - - 46% 68%

interest A feeling of
special
attention/
A charge for
borrowed
money

112,903 100 58% 90% 86% 49%

train benefit/drink 9,290 100 74% 69% 91% 57%
Table 7: Experiment results

“Schütze’s baseline” column gives the fraction of the most frequent sense in his data sets.

“Schütze’s accuracy” column gives the results of his disambiguation experiments with local

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 35

terms frequency if applicable. We got better accuracy out of experiments with “capital” and

“plant”. However, the model cannot determine the senses of word “interest” and “sake”, which

has a baseline over 85% in our data sets.

6.2.3 Discussions

Our data sets (12G) are much larger than Schütze’s data sets (435M). For example, the

size of his training set for word “capital” is 13,015, and ours is 179,793. The larger data sets

might have helped to increase the accuracy for some words.

We also observed that when the baseline is high (>= 85%), the model cannot determine

the senses of the word. The performance of unsupervised learning relies on sufficient

information from the training data. However, the model didn’t get trained with sufficient data

carrying rare meaning. The size of the training data, and the distribution of the senses of the

target word has significant influent to the performance.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 36

7. Conclusion and Future Work

In this project, we utilized the distributional word representation and the distributional

hypothesis to build a modular model to classify the senses of ambiguous words. We used the

Skip-gram model to train word embeddings using 5 billion word pairs generated from Wikipedia

pages. On the top of the word embeddings, we created vector to present context, and determined

the sense of given ambiguous word by clustering the context vectors. Our experiments showed

our model performed well when an ambiguous word had each sense accounts for than 20% of

occurrences in the training data set.

In future work, we can try to optimize the classifier. One possible approach might be

using weighted sum of contexts by taking IDF into account. We can also extend and experiment

this approach to other models with different classifiers. The classifier which works well when

occurrences are skewed to one cluster might improve the accuracy for words with large portion

of occurrences are using the most frequent sense. In this project’s implementation, we didn’t

tokenize words such as “worked” to “work”, so the Skip-gram model could learn that “worked”

is closer to “employed” than “employ”. Learning such type of relationship is very useful in other

tasks, such as translation. In disambiguation task, “He worked in a power plant” and “He is

working in a power plant” doesn’t make difference for the meaning of “plant”, thus, we do not

need both “worded” and “working” in vocabulary. By tokenize the corpus, we could reduce the

time cost of training.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 37

References

[1] Y. Bengio, R. Ducharme, P. Vincent. A neural probabilistic language model. Journal of

Machine Learning Research, 3:1137-1155, 2003.

[2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. ICLR Workshop, 2013.

[3] G.E. Hinton, J.L. McClelland, D.E. Rumelhart. Distributed representations. In: Parallel

distributed processing: Explorations in the microstructure of cognition. Volume 1:

Foundations, MIT Press, 1986.

[4] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large language models in machine

translation. In Proceedings of the Joint Conference on Empirical Methods in Natural

Language Processing and Computational Language Learning, 2007.

[5] David E Rumelhart, Geoffrey E Hintont, and Ronald J Williams. Learning representations by

backpropagating errors. Nature, 323(6088):533–536, 1986.

[6] H. Schwenk. Continuous space language models. Computer Speech and Language, vol. 21,

2007.

[7] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, J. Cˇ ernocky´. Empirical Evaluation and

Combination of Advanced Language Modeling Techniques, In: Proceedings of

Interspeech, 2011.

[8] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. In Advances in Neural

Information Processing Systems, 2013a.

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 38

[9] James R. Curran and Marc Moens. Improvements in automatic thesaurus extraction. In

Proceedings of the ACL-02 workshop on Unsupervised lexical acquisition, pages 59–66.

2002.

[10] Patrick Pantel and Dekang Lin. Discovering word senses from text. In Proc. Of SIGKDD-

02, pages 613–619, New York, NY, USA. ACM. 2002.

[11] Michael Lesk. Automatic sense disambiguation using machine readable dictionaries: How to

tell a pine cone from an ice cream cone. In Proceedings of SIGDOC, pages 24-26, 1986.

[12] Olah, Christopher. Deep Learning, NLP, and Representations. Retrieved from

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/. 2014

[13] Hartigan, J. A. and Wong, M. A. Algorithm AS 136: A K-Means Clustering Algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics). 28 (1): pages 100–

108, 1979.

[14] Schütze, Hinrich. Dimensions of meaning. In Proceedings of Supercomputing’92, pages

787-796, 1992.

[15] Pedregosa et al., Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011.

[16] Michael U Gutmann and Aapo Hyv¨arinen. Noise-contrastive estimation of unnormalized

statistical models, with applications to natural image statistics. The Journal ofMachine

Learning Research, 13:307–361, 2012.

[17] Bottou L. (2010) Large-Scale Machine Learning with Stochastic Gradient Descent. In:

Lechevallier Y., Saporta G. (eds) Proceedings of COMPSTAT'2010. Physica-Verlag HD

[18] TensorFlow Tutorial, tf.nn.nce_loss. Retriveved from

https://www.tensorflow.org/api_docs/python/tf/nn/nce_loss. 2017

WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL
NETWORKS 39

[19] McCormick, C, Word2Vec Tutorial Part 2 - Negative Sampling. Retrieved

from http://www.mccormickml.com, 2017, January 11.

[20] D. Yarowsky, Unsupervised word sense disambiguation rivaling supervised methods, Proc.

33rd Annual meeting of the ACL, Cambridge, MA, USA, pp 189-196, 1995.

[21] Schütze, Hinrich, Automatic word sense discrimination, Computational Linguistics, v.24

n.1, March 1998.

