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Abstract 

Word Sense Determination from Wikipedia Data Using Neural Networks 

by Qiao Liu 

Many words have multiple meanings. For example, “plant” can mean a type of living organism 

or a factory. Being able to determine the sense of such words is very useful in natural language 

processing tasks, such as speech synthesis, question answering, and machine translation. For the 

project described in this report, we used a modular model to classify the sense of words to be 

disambiguated. This model consisted of two parts: The first part was a neural-network-based 

language model to compute continuous vector representations of words from data sets created 

from Wikipedia pages. The second part classified the meaning of the given word without 

explicitly knowing what the meaning is. In this unsupervised word sense determination task, we 

did not need human-tagged training data or a dictionary of senses for each word. We tested the 

model with 5 randomly selected ambiguous words from 10 words that formed the test set in the 

related work by Schütze in 1998, and compared our experimental results with Schütze’s. The 

comparison showed that our model got better accuracy for 2 words, similar accuracy for 1 word, 

and poorer accuracy for 2 words. 
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1. Introduction 

Word sense disambiguation is the task of identifying which sense of an ambiguous word 

is used in a sentence. There are two variants of the word sense disambiguation task: lexical 

sample task and all-words task. In lexical sample task, we need to disambiguate a small set of 

pre-selected words. In all-words task, we need to disambiguate every word shown in the text. 

Word sense disambiguation task can be divided into two subtasks: sense discrimination task and 

sense labeling task. Sense discrimination task groups/clusters the occurrences of an ambiguous 

word with the same meaning. Sense labeling task assigns the sense labels to the occurrences of 

an ambiguous word. This project focus on the sense discrimination component of lexical sample 

task. The purpose of the project is “given a word to be disambiguated, to group occurrences of 

the word into clusters, without explicitly knowing the meaning of the occurrences”.  

There are three fundamental approaches of word sense disambiguation: dictionary-based, 

supervised machine learning, and unsupervised learning. In this project, we used unsupervised 

learning to classify the senses of the target word. In the unsupervised learning approach 

introduced by Schütze’s in 1992 and 1998 [14, 21], he interpreted the sense of the ambiguous 

word as clusters of similar contexts. We used the same interpretation in our project. Unlike 

Schütze’s approach using co-occurrence counts to generate vectors, we used word embeddings 

trained by a neural statistical language model to generate word vectors. Schütze used a data set 

taken from the New York Times News Service. We used data sets generated from Wikipedia 

pages.  

We experimented and evaluated the disambiguation tasks on some naturally ambiguous 

words that were used by Schütze (1998) [21]. We classified occurrences of these words to 



WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL 
NETWORKS  12 

two/three frequent senses and compared the experimental results with Schütze’s test results [21]. 

For some words, our model got better accuracy. However, for some words, our model failed to 

classify the senses. We analyzed the result in discussions section. 

In this report, Chapter 2 presents a review of existing work and describes the background 

and technique we used in our project. Chapter 3 describes the model architecture. Chapter 4 

introduces the data sets and data preprocessing. Chapter 4 describes the key information about 

implementation. Chapter 6 presents the experimental results and our discussions. Chapter 7 

presents the conclusion and possible future work. 

  



WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL 
NETWORKS  13 

2. Background 

This chapter reviews existing work of word sense disambiguation and introduces the 

word embeddings and neural-network-based statistic language models, which are needed to 

understand the project. 

2.1 Review of Existing Work 

Three fundamental approaches of word sense disambiguation mentioned in introduction 

are described in detail as below: 

1. Dictionary-based: Michael Lesk initially implemented this approach in 1986 [11]. 

Given a target word t to be disambiguated in context c. First, they retrieved all the 

sense definitions for t from a dictionary. Then, they selected the sense s whose 

definition had the most overlap with c of t. There are variant ways to measure the 

overlap. One example is using IDF weighted vectors. The dictionary-based approach 

requires a hand-built machine readable semantic sense dictionary.  

2. Supervised machine learning: A set of features has been extracted from the context of 

the target word. Different types of features can be extracted, such as collocational 

features and bag-of-words features. The features were used to train classifiers that can 

label ambiguous words in new text. Different classifiers have been used, such as 

naïve Bayes, logistic regression, k-nearest neighbors, etc. Same as dictionary-based 

approaches, these approaches require costly large hand-built resources, because we 

need to label each ambiguous word in the training data. A semi-supervised approach 

was proposed in [20]. In this approach, they did not rely on a large hand-built data, 

due to using bootstrapping to generate dictionary from a very small hand-labeled 

seed-set [20]. 
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3. Unsupervised machine learning: Schütze used a clustering method for word sense 

discrimination in [14, 21]. He interpreted the sense of the ambiguous word as clusters 

of similar contexts. Words were represented by high-dimensional, real-valued vectors 

derived from co-occurrence counts. As shown in Figure 1, the vector of word “judge” 

was derived from the co-occurrence counts of its neighbor words “legal” and 

“clothes”. Schütze used the most frequent 1,000 and 2,000 words to generate vectors, 

which meant the word vector dimension was 1,000 and 2,000 respectively. The 

centroid (or sum) of the word vectors in the context represented the context vector. 

The set of context vectors collected from the corpus was clustered, and then the 

centroid of the context vectors in the cluster was used to represent the sense of that 

cluster. To discriminate the sense, he measured and ranked the cosine similarity 

between the context vector and sense vector. 



WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL 
NETWORKS  15 

 

Figure 1: Word vector in Schütze’s approach 

In our project, we used a modification of the unsupervised machine learning approach. 

Word embeddings are trained by a statistical language model based on neural networks using 

data from Wikipedia pages. More details are introduced in the following sections. 

2.2 Word Embeddings 

To represent word and contexts in vector space, we used word embeddings. Word 

embeddings are sometimes called word representations or word vectors. A word embedding 

maps each word to a dense vector W of real numbers [12]. To compute word embeddings, 
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vectors of words are initialized by generating vectors with random real numbers. A program 

learns meaningful vectors by perform some tasks. 

word → 𝑅" 

W(“plant”) = [0.3, -0.2, 0.7, …] 

W(“crane”) = [0.5, 0.4 -0.6, …] 

To see word embeddings’ intuitive sense, we can visualize the representation of words in 

a two-dimension projection. For example, looking at Figure 2, digits are close together, and, 

similar words are close together [12]. It turns out, though, that much more sophisticated 

relationships are also encoded in this way [12]. We used word embeddings in our disambiguation 

task. 

 

Figure 2: Two-dimension projection [12] 

 

2.3 Statistical Language Models Based on Neural Networks 

To train the embeddings, we used a statistical language model based on neural networks. 

This section introduces some backgrounds and histories of the neural network based statistical 

language models.  

Many natural language processing systems represent each word in a one-hot vector, 

which with value 1 at the position of the word and value 0 at all other positions. The system 
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learns the joint probability function of sequences of words in a language [1]. The one-hot vector 

technique faces the problem of the curse of dimensionality [1].  For example, to model the joint 

distribution of a sequence of m words in a language with a vocabulary of size |V|, the size of the 

vector is potentially |𝑉|% – 1. 

Probably the most successful concept to fight the curse of dimension is to use distributed 

representation of words [3]. In this representation, each word is represented by a word vector of 

d real-valued parameters. d is usually equals to some hundreds, which is much smaller than the 

size of the one-hot vector.  

Rumelhart, Hinton, and Williams proposed a new learning procedure for networks of 

neuron-like units in 1986 [3, 5]. This idea has been applied to statistical language modelling by 

Bengio, Ducharme, and Vincent in 2003 [1]. They proposed a very popular model architecture 

for estimating a neural network language model (NNLM), where the model simultaneously 

learns a distributed representation for each word along with the probability function for word 

sequences, expressed in terms of these representations [1]. Many works showed neural network 

based language models significantly outperform n-gram models [1, 6, 7], which use one-hot 

vector. Another architecture of NNLM was proposed in [2]. This model used neural networks 

with a single hidden layer to learn word embeddings. Several extensions that improve both the 

quality of the vectors and the training speed were introduced in [8].  

We employed the Skip-gram model introduced in [8] in our project. It is a simply and 

efficient method with only one hidden layer for learning high-quality vector representations of 

words from large amounts of unstructured text data [3]. More detail about the model is 

introduced in the model architecture section. 
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3. Model Architecture 

3.1 A Modular Model to Determine Word Sense 

Many natural language processing tasks take the approach of first learning a good word 

representation on a task and then using that representation for other tasks. We used this approach 

for the word sense determination task. The model architecture is shown in Figure 3. We trained a 

Neutral Network Language Model to get the word embeddings. Even though a single word might 

carry multiple meanings, one representation per word was learned. We cannot determine the 

word’s sense by using the word’s embedding itself. The distributional hypothesis indicates that 

similar words appear in similar contexts [9, 10]. By exploiting this hypothesis, we used a 

classifier on top of the word embeddings to cluster the context to determine the meaning of the 

target word. 

 

Figure 3: A modular model 

 

3.2 Skip-gram Model 

The continuous Skip-gram model is simple and efficient method for learning high-quality 

vector representations of words from large amounts of unstructured text data [3]. The structure of 

the model is showed in Figure 4 [3]. The input layer takes in a target word, the projection layer 
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projects the probability that each word appears as the target word’s context. The output layer 

outputs the selected context words. 

 

Figure 4: The skip-gram model architecture 

 

The training objective was to learn word embeddings good at predicting the context 

words in a sentence. We trained the neural network by feeding it word pairs of target word and 

context word found in our training dataset. Rather than use all context words, we only scan 

through context words appear in a predefined window size. Given the sentence “natural language 

processing projects are fun.” and the window size of 2, we get the word pairs as in Table 1. 

Sentence Training samples 
natural language processing projects are fun (natural, language) 

(natural, processing) 
natural language processing projects are fun (language, natural) 

(language, processing) 
(language, projects) 

natural language processing projects are fun (processing, natural) 
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(processing, language) 
(processing, projects) 

natural language processing projects are fun (projects, language) 
(projects, processing) 
(projects, are) 
(projects, fun) 

natural language processing projects are fun (are, processing) 
(are, project) 
(are, fun) 

natural language processing projects are fun (fun, projects) 
(fun, are) 

Table 1: Word pair examples generated from a sentence 

 

More details about the model are shown in Figure 5. In this example, the vocabulary size 

is |V|. The word representation size is d. We represent the word “plant” as a one-hot vector (only 

the position of the word in the vocabulary is 1, otherwise, it is 0) in input layer. The hidden layer 

represents a matrix of size d x |V|. Each column in hidden layer represents the vector of one 

word. The output layer size is |V|. Each value in the output layer represents the probability that 

the word appears as context word of “plant”. To predict the context word, first, the model looks 

the vector of the target word up in the hidden layer, and then calculates the similarity between the 

target word and each word in the vocabulary. The similarity is measured by using dot product of 

vectors of the target word and the context word. 
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Figure 5: The skip-gram model 

 

The objective was to maximize the probability of any context word given the target word: 

𝐽' 𝜃 = 	 𝑝(𝑤./0|𝑤.; 𝜃)
3%404%
056

7

.89

 

 𝑤. is the target word, 𝜃 is the word embeddings matrix of size |𝑉| x d, and 𝑚 is the window 

size. If 𝑚 = 2, as in Figure 4, we take two words before the target word and two words after the 

target word.  |𝑉| is the vocabulary size. By taking the negative log, we can transform the 

problem to one where we minimize the loss 𝐽 𝜃  

𝐽 𝜃 = 	−	
1
𝑉	 log	(𝑝(𝑤./0|𝑤.; 𝜃))

3%404%
056

7

.89

 

The probability was defined as a sigmoid function: 

𝑝 𝑤@ 𝑤. =
exp	(𝑤@D𝑤.)
exp	(𝑤0D𝑤.)7

089
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The objective was further transformed to maximize the log probability or minimize the 

negative log probability.  

Some models use different vector representations for each word when it is target word or 

context word. In the definition above and our implementation, each word has the same vector 

representation no matter it is target word or context word, which is widely used to improve 

training efficiency.  

The large size of our word vocabulary (20K/50K) means that our skip-gram neural 

network has a tremendous number of weights, all of which would be updated slightly by every 

one of our billions of training samples [18]. To improve the train efficiency, hierarchical softmax 

or negative sampling (NEG) [2] is usually used. Negative sampling is similar as Noise 

Contrastive Estimation (NCE) [16]. The idea of NCE is to use logistic regression to differentiate 

data from noise. NEG further simplifies NCE. To use NEG in the Skip-gram model, we need to 

generate noise by randomly selecting words to create negative word pair samples. The 

experiment results in [3] show that the 2-5 negative samples are sufficient to separate signal form 

noise for large datasets. We set the negative sample size to 3 in our experiment. 

3.3 k-means Clustering 

k-means is a simple unsupervised classification algorithm. The aim of the k-means 

algorithm is to divide m points in n dimensions into k clusters so that the within-cluster sum of 

squares is minimize [13]. The word vector represents the position of the word in a high 

dimensional space. The distributional hypothesis says that similar words appear in similar 

contexts [9, 10]. Thus, we can use k-means to divide all vectors of context into k clusters. There 

could be many ways to create the vectors from the context. One way is getting the mean of the 
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context, which is used in our implementation. The restriction of using k-means clustering in our 

project is that we need to know the number of senses of the word before perform clustering on it.  
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4.  Data Sets and Data Preprocessing 

With the model described in the Model Architecture chapter, we need to extract word 

pairs from a natural language to train the model. Our training data is based on a Wikipedia data 

dump. In our experiments, we downloaded the data from 

https://dumps.wikimedia.org/enwiki/20170201/. The pages-articles.xml of Wikipedia data 

dump contains current version of all article pages, templates, and other pages. The steps to 

generate training data (word pairs) from Wikipedia data included sentence extraction, dictionary 

and reversed dictionary creation, sentence regeneration, and word pairs creation. 

4.1 Extract Sentences 

First, we extracted all sentences from article pages and cleaned the sentences. To indicate 

the start and end of sentences, we used “<” and “>” respectively, and we also treated them as 

words in the following steps. We only kept the sentences of length >= 9, since we used 10 

context words for each target word. Finally, we extracted 90,887,424 sentences in total. 

 

Figure 6: Extracted sentence examples 

 

4.2 Create Dictionary and Reversed Dictionary 

In the input layer, we used a one-hot vector to represent the word as show in Figure 5. In 

the implementation, we simply used index of the 1 in the one-hot vector to represent the word. 

To create a dictionary mapping each word to its index, we counted word frequency, and sorted 

words by their frequencies. Then, the word’s frequency rank in the descending order was used as 

the index of the word. We constrained the size of the dictionary, thus many rarely shown words 

were not included in the dictionary but were represented as “UNK” with index 0. Figure 7 shows 
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the top 5 frequent words’ frequency and their indices. The “<” and “>” represent the start and 

end of a sentence respectively. 

    

Figure 7: Word frequency and index examples 

 

A reversed dictionary, which maps the index to the word, was created simultaneously. It 

was used to construct natural language sentences from lists of indices in the experiment. 

With different vocabulary size, we will get different dictionary. In our implementation, 

we experimented two vocabulary sizes of 20k and 50k. 

4.3 Regenerate Sentences 

Using the dictionary, we translated each text sentence to a sequence of indices. The 

examples shown in Figure 6 was translated to sentences show in Figure 8 with vocabulary size of 

20k. 

 

Figure 8: Sentences with words representing in indices 

 

4.4 Create Word Pairs 

To generate word pairs, we need to set the window size of the context and the number of 

context words to be used. For example, when the window size is 3, and the number of context 

words is 4, we need to randomly select 4 context words out of 6 (3 x 2) neighbors to generate 4 

pairs for each target words. In our implementation, we set the window size to 5 and the number 



WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL 
NETWORKS  26 

of context words to 10. We processed 545,107,494 target words, which means around 5 billion 

word pairs have been generated.  



WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL 
NETWORKS  27 

5. Implementation 

We used TensorFlow as the framework to build the Skip-gram model to train word 

embeddings. The Skip-gram model has many parameters. In the following section, we 

summarize the meaning of the parameters and introduce the optimizer used in our 

implementation. After the Skip-gram model was implemented to train the word embeddings, the 

python science package sklearn [15] was used to perform k-means clustering on the top of the 

embeddings.  

5.1 Parameters of Skip-gram Model 

Table 2 shows the parameters and meanings for the Skip-gram model. We experimented 

with different parameters. We show the results in the Experiments chapter. One example setting 

to the parameters is shown in Figure 9.  

Parameters Meaning 

VOC_SIZE The vocabulary size with all rare words represented as ‘UNK’ 
in vocabulary. 

SKIP_WINDOW The window size of text words around target word. 

NUM_SKIPS The number of context words.  
Those number of context words in the window will be 
randomly took to generate word pairs. 

EMBEDDING_SIZE The number of parameters in the word embedding.  
The size of the word vector. 

LR The learning rate of gradient descent. 

BATCH_SIZE The size of each batch in stochastic gradient descent. Running 
one batch takes one step. 

NUM_STEPS The number of training steps.  

NUM_SAMPLE The number of negative samples. It can be as small as 2-5 for 
large datasets [3]. 
Table 2: Parameters for the skip-gram model  
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Figure 9: Example of parameters 

Since we are using negative sampling, the noise distribution is a parameter for the model 

as well. The tf.nn.nce_loss uses a log-uniform (Zipfian) distribution for sampling by default, so 

our labels must be sorted in the descending frequency order to achieve good results [18]. 

5.2 Optimizer of Skip-gram Model  

Gradient descent finds the minimum of a function by taking steps proportional to 

the positive of the gradient. In each iteration of gradient descent, we need to calculate all 

examples. Instead of computing the gradient of the whole training set, each iteration of stochastic 

gradient descent only estimates this gradient based on a batch of randomly picked examples [17]. 

We used stochastic gradient descent to optimize the vector representation during training. 

5.3 Tools and Packages 

The amount of data we processed is too large to load into memory at one time. 

Throughout the implementation, the data was read line by line to reduce the memory 

requirements. The tools and packages we used are listed below: 

TensorFlow r1.4 

TensorBoard 0.1.6 

Python 2.7.10 
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Wikipedia Extractor v2.55 

sklearn.cluster [15] 

numpy 
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6. Experiments 

We experimented the Skip-gram model with different parameters and selected one word 

embedding for clustering.  

The experimental results were compared with Schütze’s unsupervised learning approach 

in 1998 [21]. He used a data set (435M) taken from the New York Times News Service. We used 

the data set extracted from Wikipedia pages (12G). In his approach, co-occurrence counts were 

used to generate vectors, which had large numbers of vector dimension (1,000/2,000), therefore, 

he applied singular-value decomposition to the vectors. We used the Skip-gram model to learn a 

distributed word representation with a dimension of 250. Taking advantage of a smaller number 

of dimension, we did not need to perform any matrix decomposition. 

6.1 Experiment with Skip-gram Model 

To decide which learning rate to use, we experimented with a group of tests with 3 

different learning rates (LR) as shown in Table 3. We found the model converged to similar 

average losses after around 20M steps. We selected the learning rate as 0.3 for future 

experiments. 

Parameters VOC_SIZE SKIP_WINDOW NUM_SKIPS EMBEDDING_SIZE 

Value 20K 5 10 128 
Parameters LR BATCH_SIZE NUM_STEPS NUM_SAMPLE 
Value 0.03/0.3/1.0 128 Set to 1 epoch 3 

Table 3: Parameters of test group 1 

To decide the number of the training epochs, we experimented with 2 tests with different 

NUM_STEPS values as shown in Table 4. We observed lower loss using 2 epochs. By referring 

to the experiment in [2], we decided to train the model with 6 epochs.  

Parameters VOC_SIZE SKIP_WINDOW NUM_SKIPS EMBEDDING_SIZE 

Value 20K 5 10 128 
Parameters LR BATCH_SIZE NUM_STEPS NUM_SAMPLE 
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Value 0.3 128 Set to 1 epoch / 2 
epochs 

3 

Table 4: Parameters of test group 2 

To select the vocabulary size, we experimented with 2 tests with parameters as shown in 

Table 5. Increasing the vocabulary size from 20K to 50K helped to decrease the loss slightly. 

Parameters VOC_SIZE SKIP_WINDOW NUM_SKIPS EMBEDDING_SIZE 

Value 20K/50K 5 10 128/250 
Parameters LR BATCH_SIZE NUM_STEPS NUM_SAMPLE 
Value 0.3 128 Set to run dataset 

1 time / 2 times 
3 

Table 5: Parameters of test group 3 

To monitor the loss of the model during training, we used average loss to estimate the 

loss over every 100K batches. The loss had shown the same pattern during training with different 

parameters. The loss of the training in first group with learning rate 0.3 is shown in Figure 10. 

While the loss keep decreasing, the model found words closer to the target word. The nearest 

words of sample words at training step 10M is shown in Figure 11, and the result at training step 

40M is shown in Figure 12. Even from intuition, we could observe better performance at step 

40M. 

 

Figure 10: The average loss during training 
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Figure 11: Nearest words 1 

 

Figure 12: Nearest words 2 

The final parameters we selected is show as in Table 6. 

Parameters VOC_SIZE SKIP_WINDOW NUM_SKIPS EMBEDDING_SIZE 

Value 50K 5 10 250 
Parameters LR BATCH_SIZE NUM_STEPS NUM_SAMPLE 
Value 0.3 256 Set to 6 epochs 3 

Table 6: Parameters for our skip-gram model 

 

6.2 Experiment with Classifying Word Senses 

To train the classifier, we clustered the contexts of the occurrences of given ambiguous 

word into two/three coherent groups. To evaluate the classifier, we manually assigned labels to 

the occurrences of ambiguous words in the test corpus, and compared them with machine learned 

labels to calculate accuracy (to be described below). As shown in Figure 13, the column “human 
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label” gives the human-tagged meanings and the column “label” gives the machine learned 

labels. 

 

Figure 13: Test data examples 
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6.2.1 Metric 

After we labelled the test sentences by hand, we could find the fraction of occurrences 

with the most frequent meaning. Before word sense determination, we assigned all occurrences 

to the most frequent meaning, and used the fraction as the baseline.  

We calculated the disambiguation accuracy of the model as: 

accuracy = EF%GHI	@J	K"L.M"NHL	OK.P	N@IIHN.	%MNPK"H	QHMI"HR	LH"LH	QMGHQ
DPH	.@.MQ	"F%GHI	@J	.HL.	K"L.M"NHL

 

6.2.2 Results 

Table 7 show results of our word sense determination experiments and related results of 

Schütze’s experiments.  

word senses Training Test Schütze’s 
baseline 

Schütze’s 
accuracy 

Baseline Accuracy 

capital Stock of goods/ 
Seat of 
government 

179,793 100 64% 71% 59% 79% 

plant living/factory 164,858 100 54% 64% 59% 76% 

ruling an authoritative 
decision to 
exert control / 
influence 

  60% 84% 63% 70% 

crane bird/ 
machine/ 
person name 

6,655 100 - - 46% 68% 

interest A feeling of 
special 
attention/ 
A charge for 
borrowed 
money 

112,903 100 58% 90% 86% 49% 

train benefit/drink 9,290 100 74% 69% 91% 57% 
Table 7: Experiment results 

 

“Schütze’s baseline” column gives the fraction of the most frequent sense in his data sets. 

“Schütze’s accuracy” column gives the results of his disambiguation experiments with local 
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terms frequency if applicable. We got better accuracy out of experiments with “capital” and 

“plant”. However, the model cannot determine the senses of word “interest” and “sake”, which 

has a baseline over 85% in our data sets. 

6.2.3 Discussions 

Our data sets (12G) are much larger than Schütze’s data sets (435M). For example, the 

size of his training set for word “capital” is 13,015, and ours is 179,793. The larger data sets 

might have helped to increase the accuracy for some words. 

We also observed that when the baseline is high (>= 85%), the model cannot determine 

the senses of the word. The performance of unsupervised learning relies on sufficient 

information from the training data. However, the model didn’t get trained with sufficient data 

carrying rare meaning. The size of the training data, and the distribution of the senses of the 

target word has significant influent to the performance.  

 

  



WORD SENSE DETERMINATION FROM WIKIPEDIA DATA USING NEURAL 
NETWORKS  36 

7. Conclusion and Future Work 

In this project, we utilized the distributional word representation and the distributional 

hypothesis to build a modular model to classify the senses of ambiguous words. We used the 

Skip-gram model to train word embeddings using 5 billion word pairs generated from Wikipedia 

pages. On the top of the word embeddings, we created vector to present context, and determined 

the sense of given ambiguous word by clustering the context vectors. Our experiments showed 

our model performed well when an ambiguous word had each sense accounts for than 20% of 

occurrences in the training data set. 

In future work, we can try to optimize the classifier. One possible approach might be 

using weighted sum of contexts by taking IDF into account. We can also extend and experiment 

this approach to other models with different classifiers. The classifier which works well when 

occurrences are skewed to one cluster might improve the accuracy for words with large portion 

of occurrences are using the most frequent sense. In this project’s implementation, we didn’t 

tokenize words such as “worked” to “work”, so the Skip-gram model could learn that “worked” 

is closer to “employed” than “employ”. Learning such type of relationship is very useful in other 

tasks, such as translation. In disambiguation task, “He worked in a power plant” and “He is 

working in a power plant” doesn’t make difference for the meaning of “plant”, thus, we do not 

need both “worded” and “working” in vocabulary. By tokenize the corpus, we could reduce the 

time cost of training.  
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